Updated: 27-Aug-2013

Basic Conversions

Common Mistakes:

1. Did not show ALL MATH and ALL UNITS in determining an answer
2. Did not show the correct number of significant digits
3. As a comment - numbers in the thousands and millions, put in the comma: $1,234 \quad 1,234,567.0$
4. As a comment - for readability with a decimal with a lot of zero's, put in a space every 3 zero's: 0.000000012345

But, that number above should be expressed as Scientific Notation: 1.2345×10^{-8}
5. Numbers greater than 999 or less than 0.01 should be expressed in Scientific Notation

13 How far can you travel in one second when moving at 65 mph ?
Problems: Express the following Scientific Notation as a decimal value:

9	a.	$6.442 \times 10^{\wedge} 3$	g.
b.	$5.991 \times 10^{\wedge}-5$	h.	$2.015 \times 10^{\wedge}-4$
c.	$2.001 \times 10^{\wedge} 4$	i.	$5.583 \times 10^{\wedge}-2$
d.	$1.997 \times 10^{\wedge}-3$	j.	$4.227 \times 10^{\wedge}-6$
	e.	$7.871 \times 10^{\wedge}-1$	k.
f.	$1.001 \times 10^{\wedge} 1$	l	$1.000 \times 10^{\wedge} 3$.

$20 \quad 0.5 \mathrm{~kg}$ is how many pounds?
23 Convert 50. Miles to km ?
Convert 100. km to miles?
43 Express the following:\}
102.4005
to five digits
15.9995
to three digits
1.6385 to four digits
7.355
to three digits
$470.005215 * 0.08212 * 273.2 / 4.1=$?
64 a. 2.23 m to yards
b. 46.2 yd to meters
c. 292 cm to inches
d. 881.2 in to centimeters
e. 1043 km to miles
f. 445.5 mi to kilometers
g. 36.2 m to kilometers
h. 0.501 km to centimeters

79 Convert the following temperatures $\left({ }^{\circ} \mathrm{F}\right.$ to $\left.{ }^{\circ} \mathrm{C}\right)$
$45{ }^{\circ} \mathrm{F}$
$115^{\circ} \mathrm{F}$
$-10{ }^{\circ} \mathrm{F}$
10,000. ${ }^{\circ}$ F
80 Convert the following temperatures $\left({ }^{\circ} \mathrm{C}\right.$ to $\left.{ }^{\circ} \mathrm{F}\right)$

$78.1{ }^{\circ} \mathrm{C}$

40. ${ }^{\circ} \mathrm{C}$
$-273{ }^{\circ} \mathrm{C}$
$32{ }^{\circ} \mathrm{C}$
$93 \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ [Ethanol] has a density of $0.785 \mathrm{~g} / \mathrm{ml}$, what is the volume 82.5 g of Ethanol?
109 Convert $45 \mathrm{mi} / \mathrm{gal}$ to $\mathrm{km} / \mathrm{liter}$? (Car miles per gallon to metric)
Convert $38 \mathrm{mi} / \mathrm{gal}$ to metric
133 Is $100 \mathrm{~km} / \mathrm{h}>65 \mathrm{mph}$
156 If an object has a density of 155 lb per $4.2 \mathrm{ft} \wedge$, what is its density in the metric system?
12 Does copper react with Nitric Acid?
18 Are these Chemical or Physical Changes?
A Shirt scorches
B Tires flat in cold
C Silver gets black
D Wine to vinegar
E Cleaner grease to soap
F Battery leaks
G Acids produce bacteria

H sugar will char
I Hydrogen Peroxide fizzes
J Dry ice evaporates
K Bleach changes color
283 examples of heterogeneous mixtures,
What is the difference between a Solutions vs Mixtures
44526 J to warm 7.40 g water by $17 \mathrm{deg} \mathrm{C} \quad$ How much heat is required to warm 7.40 g of water by 55 deg C

50 Convert 76.52 cal -> Kjoules
Convert 7.824 Kj -> Kcal
Convert 489.4 j -> cal
Convert $1.598 \times 10^{\wedge} 4 \mathrm{j}->\mathrm{kcal}$

ANSWERS

13 How far can you travel in one second when moving at 65 mph ?
$\frac{65 \text { miles }}{\text { Hour }} \frac{5280 \mathrm{ft}}{\text { mile }} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=95.33 \mathrm{ft}=95 \mathrm{ft} \quad$ (2 SD)

Problems: Express the following Scientific Notation as a decimal value:

9	a.	$6.442 \times 10^{\wedge} 3$	$6,442$.	g.	$9.721 \times 10^{\wedge}-4$	0.0009721
	b.	$5.991 \times 10^{\wedge}-5$	0.00005991	h.	$2.015 \times 10^{\wedge} 6$	$2,015,000$
	c.	$2.001 \times 10^{\wedge} 4$	20,010	i.	$5.583 \times 10^{\wedge}-2$	0.05583
	d.	$1.997 \times 10^{\wedge}-3$	0.001997	j.	$4.227 \times 10^{\wedge}-6$	0.000004227
	e.	$7.871 \times 10^{\wedge}-1$	0.7871	k.	$9.734 \times 10^{\wedge} 3$	9734.
	f.	$1.001 \times 10^{\wedge} 1$	10.01	1	$1.000 \times 10^{\wedge} 1$	10.00

$20 \quad 0.5 \mathrm{~kg}$ is how many pounds?
0.5 kilogram $\mathrm{x} \quad \frac{1000 \mathrm{~g} \mathrm{x}}{1 \text { kilogram }} \frac{1 \text { pound }}{454 \mathrm{~g}}=1.101=1$ pound $\quad(1 \mathrm{SD})$

23 Convert 50. Miles to km ?
50. miles $\mathrm{x} \frac{5280 . \mathrm{ft}}{1 \text { mile }} \mathrm{x} \frac{12 \text { inches }}{1 \mathrm{ft}} \quad \mathrm{x} \quad \frac{2.54 \mathrm{~cm}}{1 \text { inch }} \quad \mathrm{x} \frac{1 \text { Meter }}{100 \mathrm{~cm}} \quad \mathrm{x} \quad \frac{1 \text { Kilometer }}{1000 \text { Meters }}=80.46 \mathrm{~km}=81 . \mathrm{Km}(2 \mathrm{SD})$

Convert 100. km to miles?
100. kilometers $x \frac{1,000 \text { Meters }}{1 \mathrm{Km}} \times \frac{100 \mathrm{~cm}}{1 \text { Meter }} \times \frac{1 \mathrm{inch}}{2.54 \mathrm{~cm}} \quad \mathrm{x} \frac{1 \mathrm{ft}}{12 \text { inches }} \quad \mathrm{x} \frac{1 \text { mile }}{5280 \mathrm{ft}}=62.1$ miles (3 SD)

43 Express the following:\}

102.4005	to five digits	102.40	15.9995	to three digits	16.0
1.6385	to four digits	1.639	7.355	to three digits	7.36

$470.005215 * 0.08212 * 273.2 / 4.1=$?
report to 2 digits, 4.1 has only 2 significant digits
a. 2.23 m to yards
$2.23 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \quad \mathrm{X} \frac{1 \text { yard }}{36 \mathrm{in}}=2.4381$ yards $=2.44$ yards (3 SD)
b. 46.2 yd to meters
$46.2 \mathrm{yd} \times \frac{36 \mathrm{in}}{1 \mathrm{yd}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \quad \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=42.245 \mathrm{~m}=42.2 \mathrm{~m} \quad(3 \mathrm{SD})$
c. 292 cm to inches
$292 \mathrm{~cm} \mathrm{X} \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=114.96 \mathrm{in}=115 \mathrm{in}$
d. 881.2 in to centimeters
881.2 in $\mathrm{X} \frac{2.540 \mathrm{~cm}}{1 \mathrm{in}}=2238.248 \mathrm{~cm}=2238 \mathrm{~cm} \quad$ [Note I put in an extra zero on the $2.54 \mathrm{~cm} / \mathrm{in}$ to keep 4 significant figures]
e. 1043 km to miles
$1043 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \quad \mathrm{X} \quad \frac{1 \mathrm{ft}}{12 \mathrm{in}} \quad \mathrm{X} \underset{52 \mathrm{mi}}{5280 \mathrm{ft}}=648.090 \mathrm{mi}=648.1 \mathrm{mi} \quad(4 \mathrm{Sd})$
f. 445.5 mi to kilometers
$445.5 \mathrm{mi} \quad \mathrm{X} \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \times \frac{12 \mathrm{in}}{1 \mathrm{ft}} \quad \mathrm{X} \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \quad \mathrm{X} \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \mathrm{X} \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=716.962=717.0 \quad(4 \mathrm{SD})$
g. 36.2 m to kilometers
$36.2 \mathrm{~m} \mathrm{X} \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=0.0362 \mathrm{~km}=3.62 \times 10^{-2} \mathrm{~km}(3 \mathrm{SD})$
h. 0.501 km to centimeters
$0.501 \mathrm{~km} \quad \mathrm{X} \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=50,100=5.01 \times 10^{\wedge} 4 \mathrm{~cm} \quad$ (3 SD , must be in Scientific Notation)

79 Convert the following temperatures $\left({ }^{\circ} \mathrm{F}\right.$ to $\left.{ }^{\circ} \mathrm{C}\right) \quad \mathrm{Tc}=[\mathrm{F}-32] / 1.80 \quad$-or- $\mathrm{Tc}=[\mathrm{F}-32] * 5 / 9$
$\left(45{ }^{\circ} \mathbf{F}-32\right) \times 5 / 9=7.222 \mathrm{C}=7.2^{\circ} \mathrm{C}$
(2 SD)
$\left(115^{\circ} \mathrm{F}-32\right) \times 5 / 9=46.111 \mathrm{C}=46.1^{\circ} \mathrm{C}$
$\left(-10{ }^{\circ} \mathrm{F}-32\right) \times 5 / 9=23.3333 \mathrm{C}=-23{ }^{\circ} \mathrm{C}$
(2 SD, assumed -10 is -10 .)
$\left(\mathbf{1 0 , 0 0 0} .{ }^{\circ} \mathbf{F}-32\right) \times 5 / 9=5537.777=5,537.7^{\circ} \mathrm{C}(5 \mathrm{SD})$
Answer Note: Temperature is reported to the number of SD equal to the lowest number of SD in the starting temp
80 Convert the following temperatures $\left({ }^{\circ} \mathrm{C}\right.$ to $\left.{ }^{\circ} \mathrm{F}\right) \quad \mathrm{T}_{\mathrm{f}}=(9 / 5 * \mathrm{Tc})+32$
$\left(78.1{ }^{\circ} \mathrm{C} * 9 / 5\right)+32=172.58{ }^{\circ} \mathrm{F}=173{ }^{\circ} \mathrm{F}$
(3 SD)
(40. $\left.{ }^{\circ} \mathrm{C} * 9 / 5\right)+32=104{ }^{\circ} \mathrm{C}=100{ }^{\circ} \mathrm{C}$
(2 SD, Note should be expressed as $1.0 \times 10^{2}{ }^{\circ} \mathrm{C}$)
$\left(-273{ }^{\circ} \mathrm{C} * 9 / 5\right)+32=-459.4^{\circ} \mathrm{F}=-459{ }^{\circ} \mathrm{F}$
$\left(\mathbf{3 2}{ }^{\circ} \mathrm{C} * 9 / 5\right)+32=89.6{ }^{\circ} \mathrm{F}=90^{\circ} \mathrm{F}=90 .{ }^{\circ} \mathrm{F}$
$93 \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ [Ethanol] has a density of $0.785 \mathrm{~g} / \mathrm{ml}$, what is the volume 82.5 g of Ethanol?

$$
82.5 \mathrm{~g} \quad \times \frac{1 \mathrm{ml}}{0.785 \mathrm{~g}}=105.095 \mathrm{ml}=105 \mathrm{ml}(3 \mathrm{SD})
$$

109 Convert $45 \mathrm{mi} / \mathrm{gal}$ to $\mathrm{km} / \mathrm{liter}$? (Car miles per gallon to metric)
$\frac{45 \mathrm{mi}}{\mathrm{gal}} \mathrm{X} \frac{5280 \mathrm{ft}}{\mathrm{Mi}} \mathrm{X} \frac{12 \mathrm{in}}{\mathrm{ft}} \quad \mathrm{X} \frac{2.54 \mathrm{~cm}}{\frac{\mathrm{in}}{\mathrm{ga}}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \quad \mathrm{X} \quad \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \quad \mathrm{X} \quad \frac{1 \mathrm{gal}}{4 \mathrm{qts}} \frac{1.057 \mathrm{gts}}{11} \quad=\quad 19.137=19 \mathrm{~km} /$ Liter
Convert $38 \mathrm{mi} /$ gal to metric

133 Is $100 \mathrm{~km} / \mathrm{h}>65 \mathrm{mph}$
$\frac{100 \mathrm{~km}}{\mathrm{Hr}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}} \quad \mathrm{X} \frac{1 \mathrm{mi}}{5280 \mathrm{ft}}=62.137=62.1 \mathrm{mph}=\mathrm{NO}$
156 If an object has a density of 155 lb per $4.2 \mathrm{ft} \wedge$, what is its density in the metric system?
Den = mass / vol
$\frac{155 \mathrm{lb}}{4.2 \mathrm{ft}^{\wedge} 3} \times \frac{453.6 \mathrm{~g}}{1 \mathrm{lb}} \times \frac{1 \mathrm{ft}^{\wedge} 3}{12 \mathrm{in} \times 12 \text { in } \times 12 \text { in }} \quad \mathrm{X} \frac{1 \mathrm{in}^{\wedge} 3}{2.54 \mathrm{~cm} \mathrm{X} 2.54 \mathrm{~cm} \mathrm{X} 2.54 \mathrm{~cm}}=0.591167=0.591 \mathrm{~g} / \mathrm{cm}^{\wedge} 3(3 \mathrm{SD})$
Basic Conversions
Page 6 of $\mathbf{8}$
27-Aug-13

12 Does copper react with Nitric Acid?
Chemical Change $\mathrm{Cu}(\mathrm{s})+4 \mathrm{HNO} 3(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{NO} 3) 2(\mathrm{aq})+2 \mathrm{NO} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
http://www.angelo.edu/faculty/kboudrea/demos/copper_HNO3/Cu_HNO3.htm

18 A Shirt scorches
B Tires flat in cold
C Silver gets black
D Wine to vinegar
E Cleaner grease to soap
F Battery leaks
G Acids produce bacteria
H sugar will char
I Hydrogen Peroxide fizzes
J Dry ice evaporates
K Bleach changes color

Chemical
Physical
Chemical
Chemical
Chemical
Chemical (White / Blue Green gunk around an electrode)
Chemical
Chemical
Chemical $\quad \mathrm{H}_{2} \mathrm{O}_{2}->\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \uparrow$
Physical
Chemical

283 examples of heterogeneous mixtures,
What is the difference between a Solutions vs Mixtures
44526 J to warm 7.40 g water by $17 \mathrm{deg} \mathrm{C} \quad$ How much heat is required to warm 7.40 g of water by 55 deg C

$$
\frac{17 \operatorname{deg} \mathrm{C}}{526 \mathrm{~J}}=\frac{55 \operatorname{deg} \mathrm{C}}{\mathrm{X}} \quad \mathrm{X}=1701 \mathrm{~J}
$$

50 Convert 76.52 cal -> Kjoules

$$
76.52 \mathrm{cal} \mathrm{x} \frac{1 \mathrm{kcal}}{1000 \mathrm{cal}} \quad \mathrm{x} \frac{4.184 \mathrm{~kJ}}{1 \mathrm{kcal}}=0.3202 \mathrm{~kJ}
$$

Convert 7.824 Kj -> Kcal

$$
7.824 \mathrm{Kj} \quad \mathrm{x} \frac{1 \mathrm{kcal}}{4.184 \mathrm{~kJ}}=1.870 \mathrm{kcal}
$$

Convert 489.4 j -> cal

$$
489.4 \mathrm{j} \quad \mathrm{x} \frac{1 \mathrm{cal}}{4.184 \mathrm{~J}}=117.0 \mathrm{cal}
$$

Convert $1.598 \times 10^{\wedge} 4 \mathrm{j}->\mathrm{kcal}$

$$
1.598 \times 10^{\wedge} 4 \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}} \times \frac{1 \mathrm{kcal}}{4.184 \mathrm{~kJ}}=3.819 \mathrm{kcal}
$$

